Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Food Res Int ; 184: 114269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609247

RESUMO

An O1/W/O2 double emulsion gel, as a functional fat substitute and based on nanoemulsions and hydrophobic Pickering particles, is prepared by two-step emulsification to co-encapsulate hydrophilic cyanidin and hydrophobic quercetin. Nanoemulsions loading quercetin are fabricated by Tween-80 and combining high-speed and high-pressure emulsification. Phytosterol nanoparticles stabilize the W-O2 interface of the secondary emulsion to load cyanidin in the W phase. The concentration of Tween-80 is optimized as 0.3% by the droplet size and viscosity of nanoemulsions. The structural stability of double emulsion gels will be weakened along with the increase of nanoemulsions, showing lower modulus and encapsulation efficiency (EE) and bigger droplets. In double emulsion gels, the EE of quercetin and cyanidin reaches 93% and 85.6%, respectively. Analysis of molecular interaction indicates that Tween-80 would decrease the in-situ hydrophobicity of phytosterol nanoparticles by hydrogen bonding adsorption, thereby weakening the emulsification. The pH-chromic 3D printing of double emulsion gels is designed according to the pH sensitivity of cyanidin. Texture profile analysis is performed to test the textural properties of 3D-printed objects. The simulated digestion is conducted on double emulsion gels. The double emulsion gel with fewer nanoemulsions is beneficial for protecting quercetin and improving the delivery due to the higher structural stability, while that with more nanoemulsions is conducive to the digestion of cyanidin and camellia oil due to weakened semi-solid properties. This double emulsion gel further simulates fat tissues by co-encapsulating hydrophilic and hydrophobic substances, promoting the application of fat substitutes in the food industry.


Assuntos
Antocianinas , Substitutos da Gordura , Fitosteróis , Emulsões , Polissorbatos , Quercetina , Géis
2.
J Agric Food Chem ; 72(12): 6213-6225, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501388

RESUMO

Human milk is naturally rich in medium- and long-chain triacylglycerols (MLCT), accounting for approximately 30% of the total fat. However, infant formula fat is prepared using a physical blend of vegetable oils, which rarely contains MLCT, similar to human milk. The differences in MLCT between human milk and infant formulas may cause different lipid metabolisms and physiological effects on infants, which are unknown. This study aimed to analyze the metabolic characteristics of formula lipid containing novel human milk fat substitutes based on MLCT (FL-MLCT) and compare their effects with those of the physical blend of vegetable oils (FL-PB) on lipid metabolism and gut microbiota in mice. Compared with the FL-PB group, the FL-MLCT group showed increased energy expenditure, decreased serum triacylglycerol level, and significantly lower aspartate aminotransferase level, epididymal and perirenal fat weight, and adipocyte size. Moreover, the abundances of Firmicutes/Bacteroidota, Actinobacteriota, and Desulfovibrionaceae were significantly decreased in the FL-MLCT group. Novel human milk fat substitutes MLCT could inhibit visceral fat accumulation, improve liver function, and modulate the mice gut microbiota composition, which may contribute to controlling obesity.


Assuntos
Substitutos da Gordura , Microbioma Gastrointestinal , Lactente , Humanos , Camundongos , Animais , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Leite Humano/metabolismo , Camundongos Endogâmicos C57BL , Óleos de Plantas/metabolismo , Termogênese
3.
Food Chem ; 447: 138982, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489876

RESUMO

In recent years, with the increasing awareness of consumers about the relationship between excessive fat intake and chronic diseases, such as obesity, heart disease, diabetes, etc., the demand for low-fat foods has increased year by year. However, a simple reduction of fat content in food will cause changes in physical and chemical properties, physiological properties, and sensory properties of food. Therefore, developing high-quality fat replacers to replace natural fats has become an emerging trend, and it is still a technical challenge to completely simulate the special function of natural fat in low-fat foods. This review aims to provide an overview of development trends of fat replacers, and the different types of fat replacers, the potential fat replacement mechanisms, sensory evaluation methods, and their consumer acceptance are discussed and compared, which may provide a theoretical guidance to produce fat replacers and develop more healthy low-fat products favored by consumers.


Assuntos
Diabetes Mellitus , Substitutos da Gordura , Humanos , Gorduras na Dieta , Substitutos da Gordura/química , Dieta com Restrição de Gorduras , Obesidade , Comportamento do Consumidor
4.
J Food Sci ; 89(4): 2110-2123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450774

RESUMO

The aim of the current study was to evaluate the influence of increasing contents (5%-25%) of avocado pulp powder (APP) produced by foam-mat drying (FMD) as a substitute for hydrogenated vegetable fat in bread on its nutritional composition, physical properties, α-amylase, α-glucosidase, and lipase inhibition, total phenolic content, antioxidant activity, color, structure, and x-ray diffraction patterns. The increase in the APP content decreased the values of lipids, carbohydrates, energy, firmness, and specific volume of breads. The inhibition of lipase activity showed a pronounced increase, while the total phenolic content and antioxidant activity were significantly elevated. The color parameters a* and b* were higher in the breads with added APP. The crystalline structure transitioned from type A to type V with 15% APP incorporation. Taken together, these results suggest that APP has potential to act as a healthier substitute for saturated fats in breads, paving the way to develop creative and innovative solutions for the functionalization of bakery food products.


Assuntos
Substitutos da Gordura , Persea , Antioxidantes/farmacologia , Antioxidantes/química , Pão/análise , Pós , Fenóis/análise , Lipase
5.
Food Chem ; 448: 139043, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552463

RESUMO

This study aimed to evaluate the potential of the bilayer emulsions stabilized with casein/butyrylated dextrin nanoparticles and chitosan as fat substitutes in preparing low-calorie sponge cakes. Among the different cake groups, the substitution of bilayer emulsions at 60% exhibited comparable baking properties, appearance, texture characteristics and stable secondary structure to fat. The specific volume and height were increased by 36.94% and 22%, respectively, while the cake showed higher lightness (L*) in the cores and softer hardness in the crumb. In addition, the moisture content of cakes was increased while the water activity remained unchanged. These results showed that casein/butyrylated dextrin bilayer emulsion was a potential fat substitute for cake products at the ratio of 60% with the desirable characteristics.


Assuntos
Caseínas , Quitosana , Dextrinas , Emulsões , Substitutos da Gordura , Nanopartículas , Quitosana/química , Nanopartículas/química , Caseínas/química , Dextrinas/química , Emulsões/química , Substitutos da Gordura/química , Culinária
6.
Food Chem ; 443: 138476, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306908

RESUMO

The positional distribution of palmitic acid (PA) in human milk fat substitutes (HMFSs) plays a pivotal role in mimicking the nutritional profile of human milk fat for nourishing non-breastfed infants. This study innovatively introduced a streamlined enzymatic process for preparing HMFSs rich in sn-2 PA using palm stearin, a PA-rich source without the necessity for positional distribution of PA. The initial step involved enhancing the sn-2 PA concentration through enzymatic interesterification using Lipase UM1, which exhibited superior catalytic efficiency than Novozym 435. This process increased the sn-2 PA level from 40.98 % to 64.51 %. Subsequently, acidolysis was employed to reduce PA levels by replacing PA at sn-1,3 positions using sn-1,3-regioselective lipases. The PA content decreased from 60.64 % to 26.73 %, simultaneously raising the relative sn-2 PA concentration to 71.57 %, meeting the benchmarks for HMFSs. This study establishes a robust conceptual framework for the prospective industrial synthesis of HMFSs.


Assuntos
Substitutos da Gordura , Leite Humano , Lactente , Humanos , Animais , Estudos Prospectivos , Triglicerídeos , Ácido Palmítico , Catálise , Ácidos Graxos , Leite
7.
Int J Biol Macromol ; 263(Pt 2): 130081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423907

RESUMO

Solid fats contribute to a delicate and pleasant flavor for food, but its excessive intake increases the risk of cardiovascular disease. Bigel is considered a promising solid fat substitute as it significantly reduces fat content while meeting consumer demands for food flavor and a balanced diet. In this study, bigels were prepared by mixing glyceryl monolaurate-based oleogel (10 wt%) and gellan gum-based hydrogel (0.8 wt%) at ratios of 1:3, 1:1, and 3:1. The microscopic results indicated that the oleogel/hydrogel ratios influenced the structure of bigels, forming oil-in-water, bi-continuous, and water-in-oil bigels with the increase of oleogel proportion, respectively. All bigels presented a semi-solid structure dominated by elasticity, and their hardness, gumminess, chewiness, and cohesiveness increased with the enhancement of hydrogel proportion. Among them, the bigels (S25:L75 and S25:H75) prepared with an oleogel/hydrogel ratio of 1:3 showed excellent freeze-thaw stability, maintaining an oil holding capacity of >95 % after three freeze-thaw cycles. Meanwhile, they also presented good oxidative stabilities, where the peroxide values and malondialdehyde contents were below 0.07 g/100 g and 1.5 mg MDA/kg at 12 d, respectively. Therefore, S25:L75 and S25:H75 are expected to be green, low-cost, healthy, and sustainable alternatives to solid fats.


Assuntos
Substitutos da Gordura , Polissacarídeos Bacterianos , Hidrogéis/química , Água , Compostos Orgânicos
8.
Food Res Int ; 176: 113832, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163728

RESUMO

Plant-based hamburger patties (PHPs) with reduced fat content made using fat replacers will meet the consumption goals of individuals who consume meat alternative products for health. In this study, we developed a dual-alternative food model by analysing the applicability of bacterial cellulose paste (BCP) as a fat replacer and supplementing it in PHPs. BCPs were prepared with solid contents of (w/w; 1.0%, 1.5%, 2.0%, 2.5%, and 3.0%) and compared and analyzed with three types of conventional vegetable [coconut oil, margarine, and shortening (SH)] and animal fats (beef tallow, butter, and lard) for various characteristics (appearance, dimensional stability, hardness level, and rheological properties). According to the results, BCP with a solid content of 3.0% (w/w) had the most similar characteristics to SH. Therefore, using SH as a control fat, PHPs in which 0%, 25%, 50%, 75%, and 100% (w/w) SH were replaced by 3.0% (w/w) BCP were prepared. Analysis of the appearance, instrumental color, diameter reduction, thickness, cooking loss, and texture profile of the PHPs, confirmed that replacement of 25%-50% (w/w) SH with 3.0% (w/w) BCP in the preparation of PHP resulted in i) redder color, ii) better dimensional stability, iii) lower cooking loss, and iv) higher chewiness of the final products. The results of the sensory evaluation showed that the PHPs, with 25%-50% (w/w) SH replaced with 3.0% (w/w) BCP, exhibited no significant differences (p < 0.05) in overall preference scores compared to the full-SH sample. In conclusion, this study demonstrated the potential of BCP as a fat substitute for the production of PHPs.


Assuntos
Substitutos da Gordura , Produtos da Carne , Humanos , Animais , Bovinos , Celulose/análise , Dieta com Restrição de Gorduras , Culinária , Produtos da Carne/análise
9.
Meat Sci ; 210: 109433, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278006

RESUMO

This paper investigated the effect of yeast protein (YP)-fat replacement on the nutritional composition, spatial structure, gel performance, and sensory quality of emulsified sausages. YP is enriched with essential amino acids (36.49 g/100 g), which improved the nutritional quality of sausages whereas reducing its fat content. Moreover, YP could absorb water and fat, thus the YP-added sausages exhibiting an amount-dependent increase in emulsion stability and water migration. The microstructure illustrated that YP acted as a filler to improve structural homogeneity and compactness of the pork gel network. And YP-fat replacement could significantly enhance the hardness, gel strength and elasticity of sausages whereas decreasing the viscosity. Additionally, at partial or full YP-fat replacement (25-100%), the YP-added sausages scored higher in odor and texture, as well as better antioxidant stability than controls. Overall, YP can be employed as a new fat substitute for the preparation of healthy and nutritional sausages, while maintaining the sensory quality.


Assuntos
Substitutos da Gordura , Produtos da Carne , Animais , Saccharomyces cerevisiae , Paladar , Substitutos da Gordura/química , Dureza , Água , Produtos da Carne/análise
10.
Int J Biol Macromol ; 254(Pt 1): 127459, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37852402

RESUMO

In this study, yeast dietary fiber (YDF) was incorporated into konjac glucomannan/kappa-carrageenan (KGM/κ-KC) for the development of fat analogs, and the impact of YDF on the gelation properties and behavior of KGM/κ-KC composite gels was assessed. YDF improved the composite gel whiteness value, and affected the mechanical properties of the composite gel, especially enhancing its hardness, and decreasing its chewiness, elasticity, and gel strength, making it more similar to porcine back fat. When the yeast dietary fiber content was 0.033 g/mL and the heating temperature was 80 °C (T80-2), the textural properties of the composite gel were closest to porcine back fat. The frequency sweep results suggested that YDF incorporation led to enhancement of the intermolecular interaction and intermixing and interaction among more easily at higher processing temperatures (80 °C and 90 °C). By scanning electron microscopy, the fatty surface of porcine back fat was flat and covered with a large amount of oil, while KGM/κ-KC/YDF composite gels developed a dense, stacked network structure. YDF caused more fragmented, folded, and uneven structures to emerge. Overall, YDF could influence the gel behavior of KGM/κ-KC composite gels, and change their colors and mechanical properties. This work could serve as a guide for preparing fat analogs with KGM/κ-KC composite gels.


Assuntos
Fibras na Dieta , Substitutos da Gordura , Mananas , Saccharomyces cerevisiae , Animais , Carragenina/química , Géis/química , Mananas/química , Suínos , Temperatura , Substitutos da Gordura/química
11.
Int J Biol Macromol ; 257(Pt 2): 128718, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101676

RESUMO

This study aimed to optimize the formulation of olive oil-in-water (O/W) emulsion gels by incorporating Pea Protein (PP) and Guar Gum (GG) as alternative options for solid fats. The optimum rheological (consistency index, apparent viscosity, recovery) and texture (firmness) properties of the emulsion gels were obtained using a mixture of 2 % PP, 1 % GG, 60 % Olive Oil (OO), and 37 % Water (W). The blend of PP2/GG1 showed the highest results for recovery and firmness, 111.27 % and 33.89 g, respectively. PP/GG blend emulsion gels exhibited higher absolute ζ-potential values, ranging between -72.3 and -77.4 mV. The polydispersity index (PDI) ranged from 0.185 to 0.535, with the most uniform distributions found in the PP/GG blend emulsion gels. Strong phase separation resistance indicated strong stability of PP-GG complex emulsion gels. Higher PP concentrations decreased emulsion oxidation. FTIR and XRD research showed that PP and GG interact strongly, indicating good compatibility. The free binding energy of the most stable configuration of the molecules was -6.8 kcal mol-1, indicating a high affinity. PP interacted with GG through 9 amino acid residues, with notable residues being Asp 224, Thr 235, Ala 332, Ile 334, and Arg 336, and their respective interaction distances ranged between 2.69 Å and 3.87 Å.


Assuntos
Substitutos da Gordura , Galactanos , Mananas , Olea , Proteínas de Ervilha , Gomas Vegetais , Substitutos da Gordura/química , Azeite de Oliva/química , Emulsões/química , Géis/química , Água/química
12.
Nutrients ; 15(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38068787

RESUMO

In this study, the impact of sn-2 palmitic triacyclglycerols (TAGs) in combination with their ratio of two major TAGs (1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) to 1,3-dioleoyl-2-palmitoylglycerol (OPO)) in human milk fat substitute (HMFS) on bile acid (BA) metabolism and intestinal microbiota composition was investigated in newly-weaned Sprague-Dawley rats after four weeks of high-fat feeding. Compared to those of control group rats, HMFS-fed rats had significantly increased contents of six hepatic primary BAs (CDCA, αMCA, ßMCA, TCDCA, TαMCA and TßMCA), four ileal primary BAs (UDCA, TCA, TCDCA and TUDCA) and three secondary BAs (DCA, LCA and ωMCA), especially for the HMFS with the highest sn-2 palmitic acid TAGs of 57.9% and OPL to OPO ratio of 1.4. Meanwhile, the inhibition of ileal FXR-FGF15 and activation of TGR5-GLP-1 signaling pathways in HMFS-fed rats were accompanied by the increased levels of enzymes involved in BA synthesis (CYP7A1, CYP27A1 and CYP7B1) in the liver and two key thermogenic proteins (PGC1α and UCP1) in perirenal adipose tissue, respectively. Moreover, increasing sn-2 palmitic TAGs and OPL to OPO ratio in HMFS also altered the microbiota composition both on the phylum and genus level in rats, predominantly microbes associated with bile-salt hydrolase activity, short-chain fatty acid production and reduced obesity risk, which suggested a beneficial effect on host microbial ecosystem. These observations provided important nutritional evidence for developing new HMFS products for infants.


Assuntos
Substitutos da Gordura , Microbioma Gastrointestinal , Humanos , Lactente , Ratos , Animais , Triglicerídeos/metabolismo , Substitutos da Gordura/metabolismo , Substitutos da Gordura/farmacologia , Leite Humano , Ecossistema , Ratos Sprague-Dawley , Fígado/metabolismo , Ácidos e Sais Biliares/metabolismo
13.
J Food Sci ; 88(11): 4472-4482, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37799063

RESUMO

Tamales are a traditional dish rich in fat and carbohydrates with increasing popularity. The present study aimed to investigate the use of agave inulin powder (AIP) as a potential fat replacer in tamales. The effect of replacing 0%, 33%, 66%, and 100% (w/w) of fat with AIP was evaluated in the physicochemical, sensory, and nutritional features of tamales. The fat content of tamales decreased up to 88% in AIP tamales, whereas total dietary fiber (TDF) increased up to 14%. TDF in AIP tamales had a higher proportion of soluble dietary fiber (SDF). Moreover, results indicated that both insoluble and SDF were formed during the processing of tamales. Fat replacement led to a reduction of up to 26% in the calorie load of tamales. Fourier transform infrared spectroscopy analysis confirmed changes in the absorption bands related to carbohydrates, with increments in peaks associated with inulin (936 and 862 cm-1 ), and inhibition of retrogradation when inulin was included. AIP addition resulted in tamales with lighter color. Fat replacement with AIP affected the texture of tamales increasing their softness, adhesiveness, and cohesiveness. In general, inulin positively affected the hedonic attributes and acceptance of tamales. Interestingly, full-fat tamales had a lower glycemic index and presented higher contents of resistant starch compared to tamales with AIP. Nevertheless, agave inulin may serve as a fat replacer yielding reduced-fat tamales with higher TDF and SDF and yielding a lower calorie load without significantly affecting the sensory acceptability of this traditional meal.


Assuntos
Agave , Substitutos da Gordura , Inulina/análise , Substitutos da Gordura/análise , Fibras na Dieta/análise , Índice Glicêmico
14.
Food Res Int ; 173(Pt 2): 113371, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803709

RESUMO

An investigation was conducted to assess the gelation characteristics of amino acid amidated pectin and its subsequent influence on the quality of minced chicken breast (MCB) when employed as a lipid substitute. Through experimentation, it was evidenced that amidated pectin, such as glycine amidated pectin (AP@Gly), glutamic amidated pectin (AP@Glu), and lysine amidated pectin (AP@Lys), demonstrated superior viscosity and gelation capacity in comparison to their native pectin (PE) counterpart. In contrast to PE, amidated pectin samples exhibited the potential to form high-strength hydrogels under conditions of minimal restriction. Additionally, evaluations conducted on all samples established that MCB samples enriched with pectin and amidated pectin demonstrated superior water retention capability. Before thermal processing, MCB samples fortified with amidated pectin showcased higher hardness and L* values in comparison to PE and the control group. However, upon thermal processing, no significant divergence was found in the chroma and texture profile analysis (TPA) attributes across all MCB samples, and the electronic tongue sensory evaluation was closely aligned with the control group. This evidence substantiates the effectiveness of amidated pectin samples as viable lipid substitutes in MCB products.


Assuntos
Substitutos da Gordura , Pectinas , Animais , Pectinas/química , Galinhas/metabolismo , Carne/análise , Lipídeos
15.
Int J Med Mushrooms ; 25(9): 73-83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824407

RESUMO

To investigate the effect of Agaricus bisporus and soybean oil as complex fat substitutes on the storage characteristics of chicken sausages, a pre-mixture of A. bisporus and soybean oil (1:2) was used to replace 0% (CK), 30% (T30), 60% (T60), and 90% (T90) of pork back fat in chicken sausages. The changes in color (brightness value, L*; redness value, a*; and yellowness value, b*), texture, pH, and total viable count of the sausages were examined at 1, 5, 10, 15, 20, 25, 30 and 35 d of storage at 4°C, respectively. The results showed that A. bisporus and soybean oil altered the color of the sausages. At the same storage time, compared with CK, L* values of fat-reduced chicken sausages decreased significantly, while a* values increased significantly (P < 0.05), b* values increased significantly (P < 0.05) at the 10 d of storage. During storage, L* and a* values of CK gradually decreased and b* values gradually increased, fat-reduced sausages exhibited opposite trends in a* values and b* values compared with CK. The hardness and chewiness of fat-reduced sausages increased significantly (P < 0.05) compared with CK at the same storage time. During storage, the overall hardness of fat-reduced sausages increased, and the springiness and chewiness fluctuated. T60 did not change significantly in cohesiveness throughout the storage period (P < 0.05). The pH of fat-reduced sausage was relatively stable during storage. The higher the amount of A. bisporus added, the greater the pH. The pH of T60 did not change throughout the storage period. A. bisporus and soybean oil showed some antibacterial effect on sausage and the minimum shelf life of chicken sausage with A. bisporus was 25 d. In conclusion, A. bisporus and soybean oil increased the redness and hardness of the sausages during storage, but the pH and total viable bacteria count remained relatively stable. T60 displayed the most stable storage properties among them, making it the optimum method for the manufacturing of fat-reduced chicken sausages.


Assuntos
Substitutos da Gordura , Produtos da Carne , Animais , Óleo de Soja , Galinhas , Produtos da Carne/análise
16.
Adv Colloid Interface Sci ; 321: 103011, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37826977

RESUMO

Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.


Assuntos
Substitutos da Gordura , Lipídeos , Lipídeos/química , Coloides , Lipase/química , Emulsões/química , Digestão
17.
J Agric Food Chem ; 71(37): 13906-13919, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695236

RESUMO

Although numerous studies indicate that formula-fed infants are more prone to obesity than breastfed ones, the underlying reasons have not been fully elucidated. This study aimed to determine the impact of human milk fat substitutes (HMFS) on the lipid metabolism of first-weaned Sprague Dawley rats. The findings revealed that administering HMFS did not affect the body weight of the rats (control: 298.38 ± 26.73 g, OPO (1,3-dioleic acid-2-palmitoyl triglyceride): 287.82 ± 19.85 g and HMFS: 302.31 ± 19.21 g), but it significantly decreased their body fat content (control: 28.70 ± 1.17 cm3, OPO: 22.51 ± 1.10 cm3 and HMFS: 14.90 ± 0.95 cm3) (p < 0.05). Lipidome analysis revealed that glycerophospholipid was the primary differentiating lipid present in the liver of HMFS-fed rats. The abundance of Bacteroides significantly increased in the intestine of HMFS-fed rats (p < 0.05), and their short-chain fatty acid (SCFA) content significantly increased (p < 0.05). The multi-omics correlation analysis established the "Bacteroidetes-SCFAs-Glycerophospholipid pathway" as a potential mechanism by which administering HMFS affects body fat buildup in first-weaned rats. Additionally, it was found that HMFS administration significantly promoted lipid metabolism in the rat liver at both the gene and protein levels (p < 0.05). These findings serve to underscore the nutritional benefits of HMFS for infants.


Assuntos
Substitutos da Gordura , Metabolismo dos Lipídeos , Lactente , Ratos , Humanos , Animais , Leite Humano , Ratos Sprague-Dawley , Glicerofosfolipídeos
18.
Food Funct ; 14(16): 7574-7585, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37526948

RESUMO

In this study, the effect of sn-2 palmitic triacylglycerols (sn-2 palmitic TAGs) and the ratio between the two major sn-2 palmitic TAGs (OPL to OPO ratio) in a human milk fat substitute (HMFS) on growth, fatty acid and calcium absorptions, and lipid and bile acid metabolic alterations was investigated in Sprague-Dawley rats. After 4 weeks of high-fat feeding, rats fed with the HMFS containing a sn-2 palmitic acid content of 57.87% and an OPL to OPO ratio of 1.4 showed the lowest TAG accumulation in their livers and hypertrophy of perirenal adipocytes, compared to the groups fed with fats containing a lower sn-2 palmitic acid content or a lower OPL to OPO ratio. Meanwhile, synergistically improved absorption of fatty acids and calcium and increased levels of total bile acids (BAs), especially for the tauro-conjugated BAs (TCDCA, TUDCA, TαMCA, TßMCA, TDCA and TωMCA), were observed in rats by both increasing the sn-2 palmitic acid content and the OPL to OPO ratio in HMFS. In addition, the levels of total BAs and tauro-conjugated BAs were negatively correlated with serum TAG, TC, and LDL-c levels and positively correlated with HDL-c levels according to Spearman's correlation analysis (P < 0.05). Collectively, these findings present new nutritional evidence for the potential effects of the TAG structure and composition of a human milk fat substitute on the growth and lipid and bile acid metabolism of the host in infancy.


Assuntos
Substitutos da Gordura , Ácidos Graxos , Humanos , Ratos , Animais , Ácidos Graxos/metabolismo , Triglicerídeos , Leite Humano/química , Ratos Sprague-Dawley , Cálcio/metabolismo , Metabolismo dos Lipídeos , Ácido Palmítico/análise , Cálcio da Dieta , Ácidos e Sais Biliares/análise
19.
Meat Sci ; 204: 109277, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454480

RESUMO

Rising health concerns and the diet-health link drive demand for healthier foods, prompting meat manufacturers to reformulate traditional products. These manufacturers have reduced fat content to enhance nutritional quality, which is essential for maintaining desired product features. As a result, numerous strategies have emerged over recent decades to decrease fat and enhance the lipid profiles of meat products. Among these strategies, using hydrocolloids, emulsification, encapsulation, or gelation of oils to produce fat substitutes stands out. Using gels allows fat replacers with characteristics similar to animal fat (similar rheological, physical, or appearance properties) but with a much healthier lipid profile (by incorporating highly unsaturated oils). Therefore, this manuscript aims to comprehensively describe the main fat replacers used to prepare meat products. In addition, an in-depth review of the latest studies (2022-2023) that use novel gels to reform meat products has been made, indicating in each case the implications that the reformulation produces at a physicochemical, nutritional, and sensory level. Given the reported results, it seems clear that the strategy of using bigels or emulgels is very promising and allows obtaining nutritionally highly improved meat products without affecting their sensory or physicochemical properties. However, the best conditions to obtain a novel gel suitable for use as a fat substitute for each meat product still need to be studied and correctly defined. Moreover, these advancements can pave the way for more extensive studies on using novel gel techniques in other food industries, expanding their applicability and leading to healthier consumer options across various food categories.


Assuntos
Substitutos da Gordura , Produtos da Carne , Animais , Produtos da Carne/análise , Carne/análise , Géis , Lipídeos
20.
Food Res Int ; 170: 112959, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316007

RESUMO

There is currently an increasing trend in the consumption of meat analogs and fat substitutes due to the health hazards by excessive consumption of meat. Simulating the texture and mouthfeel of meat through structured plant-derived polymers has become a popular processing method. In this review, the mechanical structuring technology of plant polymers for completely replacing real meat is mainly introduced in this review, which mainly focuses on the parameters and principles of mechanical equipment for the production of vegan meat. The difference in composition between plant meat and real meat is mainly reflected in the protein, and particular attention should be paid to the digestive characteristics of plant meat protein in the gastrointestinal tract. Therefore, the differences in the protein digestibility properties of meat analogs and real meat is discussed in this review, focusing primarily on protein digestibility and peptide/amino acid composition of mechanically structured vegan meats. In terms of fat substitutes for meat products, the types of plant polymer colloidal systems used for meat fat substitutes is comprehensively introduced, including emulsion, hydrogel and oleogel.


Assuntos
Substitutos da Gordura , Proteólise , Carne , Proteínas de Plantas , Polímeros , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...